QSAR TOOLEOX

The OECD QSAR Toolbox for Grouping Chemicals into Categories

OECD QSAR Toolbox v.4.1

Implementation AOP workflow in Toolbox: Skin Sensitization

• Background

- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise

Background AOP concept and description

 The OECD has developed the AOP concept as a means of providing transparent mechanistic justification and weight-ofevidence to reduce uncertainty in the predictions for complex toxicological endpoints and it is considered to be the focal point of the future development of the Toolbox*.

*Slide presented on last MG WebEx (April 2013)

Background AOP concept and description *(contd.)*

- A proof-of-concept AOP for skin sensitization is implemented in Toolbox
- The AOP scheme is a directed graph including a sequence of roots
- The AOP workflow uses filtered Toolbox functionalities
- New endpoint-specific AOP databases and profilers are implemented in Toolbox
- The implemented AOP scheme is used *only* to demonstrate example using AOP functionalities based on data rich chemicals

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise

Objectives

This presentation demonstrates a number of functionalities of the Toolbox*:

- Simulating skin metabolism for the target chemical
- Identifying analogues of the active metabolite
- Predicting sensitization potential for potentially active metabolites
- Assigning of the prediction for the metabolite to the parent chemical
- Predict skin sensitization potential using implemented AOP

*Demonstrated examples are obtained with Toolbox v4.1

Disclaimer - for the purposes of the tutorial on the use of the workflow and do not represent a guidance on the prediction for the particular chemicals which are rich in data in each node of the workflow

The OECD QSAR Toolbox for Grouping Chemicals into Categories

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise

QSAR TOOLBOX

n chemico

In vitro

In vivo

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
 - Details of AOP window
 - AOP workflow for skin sensitization
 - Thresholds of the node of AOP
- The exercise

QSAR TOOLBOX

Overview of the AOP scheme as implemented in Toolbox

Details of AOP window

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
 - Details of AOP window
 - AOP workflow for skin sensitization
 - Thresholds of the node of AOP
- The exercise

Overview of the AOP scheme as implemented in Toolbox

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
 - Details of AOP window
 - AOP workflow for skin sensitization
 - Thresholds of the AOP nodes
- The exercise

Overview of the AOP scheme as implemented in Toolbox

Implemented thresholds for the AOP nodes

- Thresholds are implemented for each AOP node
- Each threshold is indicated within description panel of the AOP node
- Threshold are identified based on assay data related to the corresponding node
- The status of the each node (passed/not passed) depends on the implemented thresholds
- Thresholds of the AOP nodes determined by expert group are provided on the slide 15:

Overview of the AOP scheme as implemented in Toolbox

Implemented thresholds for the AOP nodes

Node name	Data thresholds	Node status: Pass	Node status: Not pass
MIE - Protein binding alerts		presence of alert	absence of alert
1a and 1b <i>in chemico</i> DPRA Cys and Lys	Peptide depletion, PD (%): PD > 9 - Passed PD <=9% - Not passed	> 9 % - Passed	<=9 % - Not passed
1c - <i>in chemico</i> Glutathione depletion assay GSH (RC50)	RC50 (mmol/L) ≤ 0.099 – Extremely reactive $0.1 \ge RC50 \le 0.99$ – Highly reactive $1 \ge RC50 \le 15$ – Moderately reactive $16 \ge RC50 \le 70$ – Slightly reactive $70.1 \ge RC50 \le 135$ – Suspect RC50 > 135 – Not reactive	Extremely Reactive Highly Reactive Moderately Reactive Slightly Reactive	Suspect Not Reactive Not reactive at saturation
1d - <i>in chemico</i> Adduct formation assay LC-MS	Adduct formation (%) \geq 30% - Positive Adduct formation (%) < 30% - Negative	Positive	Negative
2a - in vitro Keratinocyte (EC1.5, EC2, EC3) AND 2b - in vitro LuSens (EC1.5, EC2)	EC3 (%) ≤ 20 - Very High 20 > EC3 ≤ 50 - High 50 > EC3 ≤ 100 - Moderate 100 > EC3 ≤ 2000 - Low EC3 > 2000 - Negative	Very High High Moderate Low	Negative
3a;3b and 3c <i>in vitro</i> Dendritic cell activity assay h-CLAT; MUSST and mMUSST (expression of CD54 and CD86)	expression of CD54 and CD86 Positive Negative	Positive	Negative
<i>4 - in vivo</i> Organ response (LLNA)	$0 \ge EC3 (\%) < 50 - Positive$ EC3 $\ge 50 - Negative$ Or	Positive	Negative
<i>AO - in vivo</i> Organism response (GPMT)	Data provided: Strong sensitizer; Moderate sensitizer; Weak sensitizer; Non sensitizer	Strong sensitizer Moderate sensitizer	Weak sensitizer Non sensitizer

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
 - Input

Chemical Input Input Screen

- Open the Toolbox.
- The six modules in the workflow are seen listed next to "QSAR TOOLBOX" title.
- Click on "Input" (see next screen shot)

Chemical Input Input target chemical by CAS#

Chemical Input Enter CAS# 107-75-5

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction

1. **Enter** the CAS# In the blank field; 2. **Click** over the box associated with chemical with high CAS-SMILES Relation (CS Relation) 3. **Click** OK

- Double click "CAS Smiles relation" displays the chemical identification information.
- This indicates the reliability of relation CAS-Name for the target chemical (see next screen shots).

Single Chemical	gory definition Data Gap Filling Chemical List Chemical List	Report Search Target Endpoint Structure (SMARTS) Query Define				
ilter endpoint tree	1 [target]				2	
Structure		107-75-5 / CC(CCCC(C)(C)0)CC=0			V – 🗆	×
	H2000	Exist in data source	21		Assigned SMILES in data source	
		Aquatic OASIS	Database	Distribute to QA	no	
Structure info		Canada DSL	Inventory	Distribute to QA	no	
— CAS Number	+07-75-5	Chemical Reactivity COLIPA	Database	Distribute to QA	no	
— CAS Smiles relation	High	Dendritic cells COLIPA	Database	Distribute to QA	no	
— Chemical name(s)	5,7 -Dirhethyl-7-hydr	DSSTOX	Inventory	High quality source	no	
Composition		ECHA CHEM	Database	Distribute to QA	no	
Molecular Formula	C10H20O2	EINECS	Inventory	High quality source	no	
Predefined substance type	Mono constituent	Genotoxicity OASIS	Database	Distribute to QA	no	
	CC(CCCC(C)(C)O)CC=O	Keratinocyte gene expression Givaudan	Database	Distribute to QA	no	
Parameters		Keratinocyte gene expression LuSens	Database	Distribute to QA	no	
Physical Chemical Properties		METI Japan	Inventory	Distribute to QA	no	
Environmental Fate and Transport		NICNAS	Inventory	Distribute to QA	no	
Ecotoxicological Information		Phys-chem EPISUITE	Database	Distribute to QA	no	
Human Health Hazards		REACH ECB	Inventory	High quality source	no	
		Skin Irritation	Database	Distribute to QA	no	
		Skin Sensitization	Database	Distribute to QA	yes	
		Skin Sensitization	Database	Distribute to QA	no	
		Skin sensitization ECETOC	Database	Distribute to QA	yes	
		ToxCastDB	Database	Distribute to QA	no	

1. Double **Click** 2. Relationships CAS-SMILE; 3. Click **OK**.

OK

3

The code indicates the reliability of the chemical identifier:

- **High:** This reliability corresponds to high reliability of CAS-SMILES relation. This label is assigned if the chemical belongs to at least one high quality data source (database or inventory)
- **Moderate:** This reliability corresponds to moderate reliability of CAS-SMILES relation. The moderate label is assigned if the chemical belongs to three "Distribute to QA" data sources.
- Low: This reliability corresponds to poor reliability of CAS-SMILES relation. This label is assigned if the chemical belongs to less than three, but at least one "Distribute to QA" data sources.

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
 - Input
 - Activate AOP and set target

Activate AOP Set target chemical for AOP

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Activate AOP Set target chemical for AOP

- Right click over the structure and select "Set AOP target"
 The target chemical appears in the AOP window
- The OECD QSAR Toolbox for Grouping Chemicals into Categories

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 1: 3,7-dimethyl-7-hydroxy-octanal (CAS 107-75-5)
 - Input
 - Activate AOP and set target
 - Workflow process

QSAR TOOLEOX

Workflow process

Workflow process start from molecular initiating event to the *in vivo* organism respond

Workflow process Step 1. MIE: protein binding

Example 1

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow process Step 1. MIE: protein binding

Workflow process Molecular initiating events

- The node MIE is passed due to the presence of protein binding alert identified for the target chemical by the two protein binding profilers
- The workflow should move further to the *in chemico* assay

Workflow process

Step 2. In chemico peptide depletion assay DPRA (Cys) (node 1a)

Workflow process

Step 2. In chemico peptide depletion assay DPRA (Cys) (node 1a)

- 1. Go to Data and check are there any experimental data for the node 1a
- 2. **Select** highlighted database
- 3. Click Gather
- 4. Data appears on data matrix
- 5. Based on presence of data for the chemical and implemented thresholds (slide #15) node 1a is getting passed. Node 1b and 1d are automatically changed as passed based the implemented thresholds.

QSAR TOOLEOX

Workflow process

<u>Step 2.</u>*In chemico* peptide depletion assay DPRA (Lys) (node 1b) and *In chemico* Adduct formation assay LC-MS (node 1d)

Example 1

In this case there is available experimental data for the target chemical related to nodes 1b and 1d. In this respect these two nodes changed their status to passed and not passed. The workflow could proceed with next node

1. Select node 1b

2. Select node 1d

The prediction buckets of both nodes were filled with experimental data.

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow process

Step 2. In chemico Glutathione depletion assay GHS (RC50) (node 1c)

Example 1

In this case there is no available experimental data for the target chemical related to node 2c, so the next step is to investigate category with similar analogues

- 1. Select **node 1c** related to *in chemico* glutathione depletion assay
- 2. Select highlighted database
- 3. Click Gather. No data has been found for the target chemical

Workflow process

Step 2. In chemico Glutathione depletion assay GSH (RC50) (node 1c)

Example 1

- 1. Switch to **Category definition**
- 2. **Select** highlighted category
- 3. Click Define
- 4. There are no structural alerts identified for the target chemical according to this profiler (no mechanistic and structural explanation). Click **Cancel** Based on the above point it is recommended to define category by "Protein binding alerts" profiler

The OECD QSAR Toolbox for Grouping Chemicals into Categories
Step 2. In chemico Glutathione depletion assay GSH (RC50) (node 1c)

<u>Step 2.</u> *In chemico* Glutathione depletion assay GSH (RC50) (node 1c)

Example 1

The obtained readacross prediction falls in the range "Moderately reactive" based on the implemented thresholds (see slide #15) - the status of the node is changed to pass (see next slide)

Data thresholds

RC50 (mmol/L) \leq 0.099 – Extremely reactive 0.1 \geq RC50 \leq 0.99 – Highly reactive 1 \geq RC50 \leq 15 – Moderately reactive 16 \geq RC50 \leq 70 – Slightly reactive 70.1 \geq RC50 \leq 135 – Suspect RC50 > 135 – Not reactive

- 1. Before enter in RA the user is asked to select In possible data inconsistency window a scale/unit. By default RC50 ratio scale is selected. Click **OK**.
- 2. The Molecular weight descriptor as the most suitable for predicting skin sensitization effect is used in RA prediction
- 3. RC50 values are presented in mmol/L
- 4. Accept prediction

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step 2. In chemico Glutathione depletion assay GSH (RC50) (node 1c)

QSAR TOOLEOX

Workflow process In chemico assays

- The nodes related to three of the *in chemico* assays are passed due to positive experimental data for the target chemical (node 1a and 1d) and the positive experimental data found for analogues with an "Aldehyde" group(1c).
- Only one of all *in chemico related* nodes (node 1b) is assigned as "Not passed" due to negative experimental data for Lysine depletion
- The workflow should move further to the *in vitro* assay (nodes 2a and 2b)

QSAR TOOLEOX

Workflow process <u>Step 3.</u> *In vitro* KeratinoSens (EC1.5, EC2, EC3) (node 2a)

<u>Step 3.</u> *in vitro* Keratinocyte ARE (EC1.5, EC2, EC3) (node 2a)

Workflow process <u>Step 3.</u> *In vitro* LuSens (EC1.5, EC2) (node 2b)

Step 3. in vitro Keratinocyte ARE and In vitro LuSens (nodes 2a&2b)

- The both nodes related to *in vitro* assays are passed due to positive experimental data found for the target chemical and implemented thresholds (slide #15)
- The workflow should move further to the other *in vitro* assays (nodes 3a, 3b and 3c)

QSAR TOOLEOX

Workflow process

<u>Step 4.</u> *In vitro* Dendric cell activity assays h-CLAT, MUSST and mMUSST (nodes 3a, 3b and 3c)

Step 4. in vitro Dendritic cell activity assay (nodes 3a, 3b and 3c)

- The nodes 4a and 4b related to the *in vitro* Dendritic cell activity assay (h-CLAT) is passed due to positive experimental data found for the target chemical
- The workflow moves further to the *in vivo LLNA* assay (node 4)

Workflow process <u>Step 5. In vivo</u> Organ response (LLNA)(node 4)

Example 1

1a KE 2 in		are there any data for the target chemical the <i>in vivo</i> Organ response (LLNA) (node 4)
Q: 3 Dat port Export Gather Import IUCLID6 C	Filter endpoint tree	 KE 2 - Cellular responses (gene expression) a - In vitro KeratinoSens (EC.15, EC.2; EC.3) b - In vitro Ledens (EC.15, EC.2; KE 3 - Cellular responses (activation of dendritic cells) a - In vitro Dendric cell activity assay MrSCI (expression of C b - In vitro dendritic cell activity assay MrSCI (expression of C b - In vitro dendritic cell activity assay MrSCI (expression of C b - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of C c - In vitro dendritic cell activity assay MrSCI (expression of
Cournent 4 CAS: 107755 Protein binding potency Protein binding alerts for skin sensitization by OA ▼ Enter GF(RA) with 23 chemicals, 77 data point Document 5	Structure	S - In vitro dendritir cell activity assey mMUSST (expression o HE 4- Organ response (Cal LUNA) A - In vitro Organ response (Cal LUNA) Adverse canceme (Ad) - In vitro Organism response (GPMT) Target chemical Info panel
A Document 5 Document 7 # CAS: 107755 Document 6	Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Bioaccumulation Carcinogenicity	Image: Chemical Into panel Hog Hode short name: AO Hog Node short name: AO Hog Node short name: AO Hog Sin semilization Relevant database: Sin semilization Sin semilization Associated endpoint tree positions: Hug Node short ree positions:
t Select All Unsel t Physical Chemical Reactive GSH Experiment Human Health Ha Dendritic cells CO in Keratinocyte grie expression fuxuutan Keratinocyte grie expression LuSens	Developmental Toxicity / Teratogenicity Genetic Toxicity Immunotoxicity Irritation / Corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity	A A A A A A A A A A A A A A A A A A A
REACH Skin sensitization database (normalised) Skin Sensitization Skin Sensitization ECETOC Inventories Inventories Options f Select All Unselect All Invert About bez_Import Custom Inventory_for tb40_1 Canada DSL COSING DSSTOX ECHA PR ENECS The OECD OSAB Toolbox for Groupin	AV SW AOP Sensitisation Skin GPMT GPMT GPMT GPMT Club BRDT BRDT	 2. Select database related to the node 4, as before that unselect all others 3. Gather data and click OK in the appeared message 4. The data appears in the datamatrix

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Step 5. in vivo Organ and Organism assays (node 4 and AO)

• Both nodes related to the two *in vivo* assays (LLNA and GPMT) are passed based on the positive experimental data for the target chemical according to the implemented thresholds

Outlook

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 2: Eugenol (CAS 97-53-0)
 - Input target

Chemical Input Enter CAS# 97-53-0

The Toolbox now searches the databases to find out if the CAS# you entered is linked to a molecular structure stored in the Toolbox. It is displayed as a 2-demensional depiction

Create new document and Enter the CAS# 97-53-0 In the blank field;
 Click Search button;
 Press OK

The OECD QSAR Toolbox for Grouping Chemicals into Categories

Chemical Input Target chemical identity

- Double click "CAS Smiles ralation" displays the chemical identification information.
- This indicates the reliability of relation CAS-Name for the target chemical(see next screen shots).
- The workflow on the first module is now complete, and the user can proceed to the next module.

Chemical Input Target chemical identity

QSAR TOOLBOX	→	egory definition	ling > Report	X 0 4 4 0
Data Import Export				The OECD QSAR Toolbox for Grouping Chemicals into Categories
Gather Import IUCLID IUCLID6	Filter endpoint tree Structure Structure info CAS Number CAS Smiles relation Chemical name(s) Composition Molecular Formula Predefined substance type Structural Formula Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards	1 [target] 20069-72-9 High trans-2/cis-6-Nonadi C9H160 Mono constituent CCC=CCCC=CCO	Exist in data source Data source type Data source quality Assigned SMILES in data source Canada DSL Inventory Distribute to QA no DSSTOX Inventory Distribute to QA yes ECHA PR Inventory Distribute to QA yes NICNAS Inventory Distribute to QA yes Skin Sensitization Database Distribute to QA yes TSCA Inventory Distribute to QA yes	<u>х</u> ОК
HPVC OECD METT Japan NICNAS	ouble Click 2. Re	lationship	s CAS-SMILES	×

Chemical Input Target chemical identity

The code indicates the reliability of the chemical identifier:

- **High:** This reliability corresponds to high reliability of CAS-SMILES relation. This label is assigned if the chemical belongs to at least one high quality data source (database or inventory)
- **Moderate:** This reliability corresponds to moderate reliability of CAS-SMILES relation. The moderate label is assigned if the chemical belongs to three "Distribute to QA" data sources.
- Low: This reliability corresponds to poor reliability of CAS-SMILES relation. This label is assigned if the chemical belongs to less than three, but at least one "Distribute to QA" data sources.

Outlook

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 2: Eugenol (CAS 97-53-0)
 - Input target
 - Set AOP target

Activate AOP Set target chemical for AOP

			·		+ Input	F Profiling ► Data	► Category def	01010 01 0 10100 nition Data Gap Fil	ling ▶ Repo		Scheme
👗 Docι	Open Ument 1 CAS: 80159 Ument 2 CAS: 10775	16	Save Juments	CAS#	T Name	Single Chemical		hemical List	Sear	2a - In vitro Keratinosen (ECLS, EC2, EC3) 2b - In vitro Users (ECLS, EC2, EC3) 2b - In vitro Users (ECLS, EC2) 4 EC 3 - Celular responses (activation of dendritic cells) 3a - In vitro Dendritic cell activity assay h-CLAI (expression 3b - In vitro dendritic cell activity assay h-CLAI (expression 3b - In vitro dendritic cell activity assay h-CLAI (expression c - e + In vitro dendritic cell activity assay h-CLAI (expression c - e + In vitro dendritic cell activity assay h-CLAI (expression c - e + In vitro dendritic cell activity assay h-CLAI (expression c - e + In vitro dendritic cell activity assay h-CLAI (expression c - e + In vitro dendritic cell activity assay h-CLAI (expression c - e + In vitro dendritic cell activity	panel
▲ Docu ▲ # C 『 ▲ C ▲ C ▲ C ▲ Docu # C ▲ Docu	AS: 10775 Protein Protein Frotein Frotein Frotein CAS: 10775	5 binding pot binding aler r GF(RA) wit	tency rts for skin s th 23 chemi			Structure info Parameters Physical Chemical Properties Environmental Fate and Transport Ecotoxicological Information Human Health Hazards Acute Toxicity Bioaccumulation				H ₃ C	Node short name: MIE About Ab
 ▲ Docu # C ▲ Docu # C ▲ Docu 	ument 8 AS: 10775	5		[1	Carcinogenicity Developmental Toxicity / Terator Genetic Toxicity Immunotoxicity Irritation / Corrosion Neurotoxicity Photoinduced toxicity Repeated Dose Toxicity	genicity 2		Export Data matrix Expand branch Collapse branch Expand All Collapse All Target endpoint Open path Copy path	3	
						Sensitisation ToxCast Toxicity to Reproduction	AW SW A		Function Sort Set tree hierarchy Activate AOP		

- 1. Expand Human health hazard part of the endpoint
- 2. Right click near the AOP label
- 3. Select Activate AOP
- 4. Set target for AOP (see slide 26)

Outlook

- Background
- Objectives
- Overview of AOP scheme as implemented in the Toolbox
- The exercise
 - Example 2: Eugenol (CAS 97-53-0)
 - Input
 - Activate AOP and set target
 - Workflow process

• Workflow process start from molecular initiating event to the *in vivo* organism respond

Workflow process Step 1. MIE: protein binding

Workflow process Step 1. MIE: protein binding

Workflow process Step 1. MIE: protein binding

Example 2

Simulate Autoxidation products of the target chemical – manually change the node status

1. Right click on the MIE node

- 2. Select Set state
- 3. Change the state from Not Passed to Passed

Workflow process Molecular initiating events

- The node MIE is passed due to the presence of positive protein binding alert identified for the Autoxidation products of the target chemical
- The workflow should move further to the *in chemico* assays

Step2. In chemico peptide depletion assay DPRA (Cys) (node 1a)

Step2. In chemico Glutathione depletion assay GHS (RC50) (node 1c)

QSAR TOOLEOX

Workflow process In chemico assays

Example 2

• The nodes related to the *in chemico* assays are passed due to positive experimental data for the target chemical (node 2a, 2b, 2c and 2d) The workflow should move further to the *in vitro* assay (node 2a and 2b)

Workflow process <u>Step 3.</u> *In vitro* KeratinoSens (EC1.5, EC2, EC3) (node 2a)

Workflow process <u>Step 3.</u> In vitro LuSens (EC1.5, EC2) (node 2b)

Workflow process Step 3. *in vitro* Keratinocyte ARE and *In vitro* LuSens

- The nodes 2a and 2b related to the Keratinocyte ARE (EC1.5, EC2, EC3) is passed based on the experimental data found for the target chemical (threshold are specified on slide # 15).
- The workflow moves further to the *in vitro* Dendritic cell assay (nodes 3a, 3b and 3c)

Step 4. in vitro Dendritic cell activity assay (nodes 3a, 3b and 3c)

Step 4. in vitro Dendritic cell activity assay (node 4a and 4b)

- The node 3a, 3b and 3c related to the *in vitro* Dendritic cell activity assays (h-CLAT, MUSST and mMUSST) are getting passed due to positive experimental data found for the target chemical
- The workflow could further move to the *in vivo* LLNA assay (nodes 4) The OECD QSAR Toolbox for Grouping Chemicals into Categories

Workflow process <u>Step 5. In vivo</u> Organ response (LLNA)(node 5)

Step 5. in vivo Organ and Organism assays (node 4 and AO)

Example 2

• Both nodes related to the two in vivo assays (LLNA and GPMT) are passed based on the identified positive experimental data for the target chemical

Conclusions

 This tutorial illustrates how implemented proof-of-concept AOP scheme can be used in assessment of skin sensitization of chemicals using different combinations of data and grouping methods related to nodes of the AOP.